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Abstract. This paper presents a comparative
overv leu of the disciplines of modal testing
used In structural engineering and system
identification used In control theory. A llst
of representative references from both areas Is
given, end the basic methods are described
briefly. Recent progress on the Interaction of
modal testlng and control disciplines Is dis-
cussed. It Is concluded that combined efforts

of researchers in both dlsclpllnes ere required
for unification of modal testing and system
identlflcatlon methods for control of flexible

structures.

"the areas of modal testlng and system Identlfl-

(atlon encompass a multltude of approaches,
perspectlves and technlques whose Interrela-

*lonshlps and relatlve merlt are dlfflcult to
._ort out. As a result, It Is dlfflcult for a

nonspeclallst to extract the fundamental con-

cepts. It may take conslderable effort to galn
q_}nough Intuition about a particular technique
-o be able to use It effectlvely In prectlce.

"he objective of thls paper Is to present an
overvlew of the parallel hlstorlcel development

)f modal testing used In structural englneerlng

}nd system Identlflcatlon used In control

_heory. A l lst of prlnclpal references Is
provided for studying the slmllarltles and

dlfferences among the many approaches In both
,_reas.

1400/¢ TESTING

Fhls section contains a synopsis of the field

of modal testing. The following three Items

._re provlded: (I) a concise, yet complete,

::hronology of key developments that have oc-
curred over the 40-year history of modal test-

ing, (2) a brlef summary of currently used

approaches, and (3) a chronologlcal reference
11st of key publlcetlons.

The subject of modal testing has evolved con-
tlnuously since the 1940's, and an extensive
literature has been generated (for example,
note the bibliographies on pp 1659-1734 In
Proceedings of the 4th International Modal
Analysis Conference, February 1986). It ls
beyond the soope of this paper to discuss all
this activity, interested readers are referred
to these references, or to several other more-
complete every laws whlch have been written
recently [51,53,64,74,75], for addltlonal
Informetlon.

Modal testlng In the field of structures means

the process of measurlng slgnals produced by a
structure and Identlfylng modal parameters

(damping, frequencies, mode shapes and modal

partlclpatlon factors). System Identlflcatlon
In the field of controls means the process of

measurlng signals produced by a system and
building a model to represent the system for
control deslgn. Technlques to Identlfy a model

from measured data typlcally contain two steps.

Flrst, a famlly of candidate models Is chosen
and then the partlcular member In this family
Is determined which satisfactorily descrlbes

the observed data based on some error crlte-

rlon. If the Identlfled model is a linear

model In state space representatlon, the elgen-
sol utlon of the model provldes elgenvalues and

elgenvectors that, In turn, determine modal
parameters for structures. Correlatlon between
the fields of modal testlng and system Identl-
flcatlon for controls Is evident.

The area of modal testlng Is a wel l-developed
dlsclpl Ine wlth strong experimental foundations

[I-76]. The area of system Identlflcatlon for
controls Iswell-developed with solld theoretl-

cal and methodological foundations [77-170].

While the development of each Indlvldual area
contlnues, there Is a need to provlde a compre_

henslve yet coherent unlflcatlon of the areas.
Actlve control of flexible structures will

require the combined efforts of researchers In Chronology of Key DovelolInts. The chronology
both dlsctpllnes. Among these challenges Is ls divided Into three separate eras: pre-1970,
control of large space antennas and platforms. 1970-1979 and 1980-present. The start of the
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second and third eras accompanied slgnlflcant

Improvements In computer technology. The
second era began wlth the wldespread Introduc-
tlon of mlnlcomputers (e.g., PDP-11) and the
third with the avallabll Ity of much larger and
faster computers for laboratory data analysls
(e.g., VAX or mainframes).

In the first era of modal testing, from ap-
proximately 1940 through 1969, analog tech-
nlq ues were used al most excl uslvel y.
Laboratory computers were not yet available,
and mainframe computers were used only rarely
for data analysis. Much of the earl Iest work
occurred In the aircraft Industry, where test-
Ing was conducted to check the accuracy of
calculated normal modes used In flutter and

dynamlc loads predictions. The two most slg-
nlflcant contrlbutlons from this period were
the works of Kennedy and Pancu [1], who Intro-
duced "circle fltting w for decomposing fre-
quency response functions (FRF's) Into the
constituent modes, and Lewls and Wrlsley [2],
who described a systematic approach for tuning
Indlvldual modes using multiple shakers and

apportioned slnusoldal excitatlon. These two
technlques, with numerous variations, were used
In the majority of modal tests conducted prlor

to 1970. Testing was very time consuming,
however, and requlred considerable practice and
skl I I for success. AI I laboratory equlpment
was analog, and most data analysis was per-
formed by hand.

The second era occurred during the 1970ts,

sparked by the Introduction of laboratory
minicomputer systems [15,19] and the fast
Fourler transform algorithm to compute fre-
quency response functions [18,30]. Compared
with the classical method of slowly sweeping a
slnusoldal signal to generate FRF's, these
systems offered tremendous speed advantages.
They were wldaly adopted by the modal testing
community, with the exception of those organi-
zations that had already made large Investments
In multlple-shaker slnusoldal testing equlp-
merit. The mlnlcomputer In these laboratory

systems was used not only to compute FRFWs, but
al so for curve fitting the FRF data to estlmate
modal parameters. Many of the analysls tech-
niques used durlng thls period, however, were
simply dlgltal verslons of techniques developed
earl ler (e.g., circle fitting or phase separa-
tion techniques). This sltuatlon began to
change during the second half of the 1970ts in
conjunctlon with the avallabl111y of more
powerful processors [31]. Also, the use of
malnfreme computers for date analysis was
beginning to occur [34,35-1. There was consid-
erable hesltancy to use mainframes, however,
because of the expense and because most analy-
sis techniques In use at the time required
considerable Interaction witch the user.

The third era of modal testing began around

19_, again In conjunction with improved com-
puters and data acqulsltlon equipment. One of
the most significant changes occurred In the
use of multlple-lnput random excltatlon [42],
rather than the slngle-lnput random approach
previously used most often. Multlple-lnput
excitation provides several advantages: (1) It
Is consistent with multiple-reference (multi-

1 e-lnput) modal Identl f Icatlon al gorlthms
49,55,60,61,67] which el low closely spaced

modes to be better Identified. (2) It mlnlmlzes

troublesome shifts In frequency and mode shapes

which can occur when exciters are moved to

dlfferent points on a structure, and (3) It Is

slgnlflcantly faster whenever several different
Iocatlons and dlrectlons of excitation are
needed to excite all the modes of Interest,

whlch Is usual ly the case. In conjunction wlth

mLltlple-lnput methods, Improved methods of
e>:cltatlon [54,56], signal processing [65],

frequency response calculation [59], and quick

data analysls [66,69] have also been Intro-
dL_ced. Renewed attention Is belng given to

AF'MA-type analysis techniques [72] which were
sludled years earller [11,13,35] and general ly

thought to be too computational ly extensive for
l_e volume of data obtained In modal tests

(often >20 modes and >I00 measurements). Faster

arid more powerful computers now make these

a{:proaches more practical. Faster computers

also permit nonlinearities to be better de-
t(_cted and Identlfled, uslng new slgnal proc-

e:;slng techniques [57]. Nonlinearities are
also being better quantified uslng modern

slepped-slne excitation techniques. In conjunc-
tlon wlth new modal Identlflcation algorithms

wtl.ch can use unequal ly spaced frequency data
[_rO]. Renewed interest Is also occurring In
tie classlcal forced normal mode approach to
_:,dal testlng. However, today the excltatlon
t_mlng process Is being computerized more than
e_1er [76].

Current IWIBthodology. As discussed above, modal

t(,stlng methodology has changed considerably
_.er the years -- and It continues to change.
]]ere are now many different ways to conduct

testlng and data analysls. Essential ly all

techniques work well wlth slmple structures,

yet slgnlflcant dlfferences occur when used on
a:_nplex, built-up structures. It Is still
olten difficult to deduce the exact source of
these differences, however, because the "true"

answers are unknown with experlmental data.

Better methods for comparing various Identlfl-

_tlon techniques wlth complex data are needed

[_I], as are methods for conductlng more real-
l_tlc and thorough slmulatlons of complex
s_ructural behavlor to generate data for these

s,udles. To a large degree, the technlques
u_ed most often today are those which have

d()monstrated repeatedly thel r tol erance of the

o:)mplexltles of real data.



Figure I providesan estimateof the general

types of e_cltatlon and analysis now being used
In the model testlng community In the Unlted
States (the percentage of multi-input tuned

slne dwell testing Is much higher In Europe).

Multiple-input random excltatlon Is now very
popular. It Is estlmeted that 45% of all

laboratory modal tests ere belng conducted thls

way. Stlll very popular Is the slmpler, tradi-
tional single-input random approach (30%). The

percentage of people using multi-input tuned
sine dwell (forced normal mode) testing has

been fal llng since around 1975 end Is estimated
to be about 10%. Of these, approxlmetely

one-hal f are now using computers to generate

optimum tuning patterns. A smell percentage of
tests (5%) are also conducted uslng natural

ambient eEltetlon forces (e.g., wlnd on bulld-

Ings, waves on offshoreoll platforms), usual ly
because artlflclal excltatlon Is Impractical.

In many cases, the Identlflcatlon results from
these tests are much more amblguous than those
from controlled-e_cltatlon tests.
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Figure I. Current U.S. Modal Test Methodology
Preference s (Est Imeted).

In the vest majority of testing (80%), fre-

quency response functions are computed prior to
using a modal Identlflcatlon algorlthm. There

are many reasons why FRF's ere still generated
so often, although there are now many Identlfl-

cation algorlthms available whlch can analyze
free- or forced-response time h Istor les dl-

rectly. A slgnlflcant factor Is tredltlon:

experlenced modal testing personnel can deduce
considerable Information simply by observlng

frequency response functions. If tlme h lsto-

rles are processed directly by the modal Iden-
tl flcetlon algor Ithm, many tredltlonel
evaluatlon crlterle are unavelleble. The Inter-

medlete step of calculetlng FRF'swlII probably

be sklpped more often In the future es more

experience and confldence Is galned with the
newer, dlract analysls approaches.

_or modal Identl f Icatlon, mul tl-degree-of-

Ireedom (MDOF) time-domaln algorithms are being

tsed the majority of the tlme (40%), fol lowed

l.y MDOF frequency-domaln (30%), and faster

_In_l e-degr ee-of- freedom (SDOF) algor Ithms
_20_). In most cases, the data used by the

MDOF time-domain algorithms ere Impulse re-

_ponse functlons obtained by Inverse Fourier
_rensformatlon of FRF's. Only In e few Iso-
eted Instances ere free-response data being

,_sed directly. MDOF time-domaln algorithms

_;tlll appear to be unsurpassed In thelr eblllty

!o analyze wldebend data with many modes, whlle
-heir frequency-domain counterparts have been

(_bserved by some people to be more accurate
_er narrow frequency bends, or when damping Is

relatively high (e.g., greater then 5%).

SYSTIEN IDENTIFICATION USED IN CONTROL THEORY

i_Ince the mld-1960's the field of system Iderm

_Iflcatlon has been an Important dlsclpllne

_Ithln the automatlc control area. One reason

s the requlrement that mathematical models
_Ithln e specified accuracy must be used to

_pply modern control methods. Another reason
;s the evellabll Ity of dlgltel computers that

_n perform complex computatlons. It Is not
_he alto of this paper to present e detailed

analysis of achievements In this contlnuously

]rowlng f leld or to glve the state-of-the-art.
_ee references [77-I 10] for more details.

:requency and tlme domain methods glve comple-

nentery views of many Important problems In

linear system theory and control theory. Some-
Hines, the two methods have been seen as rl-

vals, partlculerly on Issues of Implementa-
flon and appllcatlon to real systems. Hlstorl-

._elly, frequency domain methods doraInated

_heory and practice of system Identlflcatlon In
control engineering prior to the 1960's.

Frequency Domain Approach. Frequency domain
Identlflcatlon In control engineering gained

relevance with stability and design methods
based on frequency response measurements.

Frequency response estlmatlon began wlth the
technique known es transfer function analysls.
The slnusoldal transfer functlon analyzer Is

recognlzed as e robust and practlcal ly useful

non-parametrlc Identlflcetlon method. Thls Is
due to the Intrlnslc rellablllty wlth which the
slnusoldal transfer functlon analyzer Is able

to reject low-frequency drlft end harmonic
dlstortlon due to nonllnearlty. However, the

slnusoldel transfer functlon analyzer requlres

long test times to sequentially Identlfy each
relevant point on a frequency response curve. A
more widely used class of technlques has been

developed around dlgltal spectral analysls and
numerlcal Fourler transforms. The Impact of
the Fast Fourier Transform (FFT) developed by

Cooley and Tukey [I 13] upon dlgltal and analog



spectral analysis was enormous. The FFT actu-
ally encompasses a whole family of algorithms,
many of whlch are Included In the InErltute of
Electrlcal and Electronics Engineers (IEEE)
collected reprint wrltten by Rablner and Rader
[117]. Modern dlgltal spectral analysls, real
time or off-line, Is normal ly achieved by the
dlract method which takes the FFF of data
blocks and then averages the resulting spectral
est I mates.

The direct estimation scheme can also be ap-

pl led to determine estimates of frequency
response functions by uslng a closed loop
system deslgn. The normal open loop system
deslgn may give blased results wlth physical ly
unrealizable frequency response estimates. A
closed loop system design may Improve this
sltuatlon, leading to gain and phase estimates
whlch are well behaved, provlded that careful
at-rentlon Is pald to wlndowlng and allaslng. A

more precise discussion of the accuracy of
closed loop estimates Is glven In Derail [119],
and Wel Istead [122].

The maximum entropy method (MEN) of spectral
analysis was orlglnated by Burg [114] for
analyzing geophysical data, and further devel-
oped by Ables [118] and glrych and Bishop
[120]. The basic philosophy of the method Is
to construct spectral estimates that are con-
slstent wlth all relevant data and are maxl-

really non-commlttal with regard to unavailable
data. The maximum entropy method general ly

gives superlor spectral resolu_lon to tradl-
tlonal methods at the expense of Increased

varlablll_/, and posslbly erroneous spllttlng

of spectral lines observed by Fougere, etc.
E121j.

Frequency domain Identification, which, In the
past, emphasized non-paremetr lc I dentl f Icatlon,
l.e., frequency response estlmation, has lost
popularity In recent years. Thls Is due to the
fact that current control synthesis and deslgn
tools require parametrlc system models such as
a state space representation, stochastic dif-
ference equation or generallzed regression
model. If a spectral analysis or transfer
function analysls experiment Is conducted,
least squares can be used to fit a parametrlc
frequency response model by assembl Ing a set of
N-measured frequency response points and solv-
ing the unknown coefficients of the transfer
function model 1-112,115,123]. However, these
flttlng met_nods may produce poor models which
may not represent the underlying system well
enough for controller design, particularly for
complex structural dynamlcs problems. To a
I lmlted degree, these shortcomlngs are being
Investigated by current work on combined Iden-
tlflcatlon and control. Indeed, the pole-zero

asslgnment technique developed by Wel Istead, et
al. [124] seems to offer qualltles of robust-

ness. The technique developed by Juang and
S_zukl [168], which uses estimated frequency
spectra to Identlfy a state space model In

_>dal space vla system reallzatlon theory, also
9T_,ems to offer a good model for control design.

Time Do, In Approach. The tlme domain approach
has dominated the control engineering I ltera-
ture on system ldentlflcatlon over the past 20
years. In this section, a general description
o_ commonly used I lnear system ldentlflcatton
methods will be glven. Time domaln approaches
are categorlzed acoordlng to the choice of
model and the choice of Identification crlte-
r[on for evaluating the estlmatlon qual Ity.
Basic methods are given In the references.

T_e origin of the least squares method can be
t-aced to Gauss [125] who formulated the basic

concept and used It practlcally for astronoml-

c]l computation. Slnce then, It has been

widely appl led to many problems. The racurslve

algorithm to calculate the least squares estl-
m_te has apparently been found Independently by
several authors. The orlglnal reference seems

t:_ be Plackett [128]. An early and thorough
t-ea1_ent of the least squares method appl led

to dynamlc system Identlflcatlon Is given by
/_strom [94]. The statlstlcal background for

_¢tochastlc approximation was developed by
Fobblns and Monro [129]. Stochastic approxlma-

11on methods have also been derlved by Sakrlson

[138]. Computational algorlthms are based on

stochastlc gradient methods for linear regres-
sion models. In LJung [161] the stochastic

¢_pproxlmatlon approach Is used to derive recur-
_=[ve Identlflcatlon algorithms for problems

ether than IInear regression models.

]he Kalman-Bucy fllter [132] Is a state estlmem

1or. It Is Mayne [134] who draws attentlon to
extending the Kalman-Bucy fllter for parameter
estlmatlon of a state space model. The baslc
Idea of the Instrumental variable method (e.g.,

Fendal and Stuart r133] and Young [143]) Is the

.(eneratlon of an extra slgnal, l.e., the In-

.,rtrumental variable, whlch Is correlated wlth

_he useful slgnals of the process but which is
tncorrelated with nolse. This el Imlnates the

tlas error associated wlth least squares estl-

r_atlon. Recurslve Instrumental varlable meth-
c,ds have been used extenslvely by Young [153].

"!he characterlstlcs of noise corruptlng the

(:utput of the system may not be well known. In

the general Ized least squares method, the
parameter estimates may Include estimates of

==olse parameters. Insplred by Clarke's algo-
rlthm [139] for general Ized least squares
_]nalysls, a recurslve method was suggested by

Hastlng-James and Sage [142]. The prlnclple of
,_;xtended least squares Is that the calculatlon
of the error between the true output and the

,_stlmated output Is based on past estimates of



system and nolse parameters. The extended

least squares algorlthm was Independently
derived by Panuska [140] and Young [141] and

widely used and rediscovered by Talmon and van
den Boom [149]. In many practical problems of

parameter estlmatlon the problems arises of

sol vlng an overdetermlned lll-condltloned set
of algebralc equations. To circumvent thls

problem, the error covarlance matrix can be

propagated In a square root form so that the
posltlve seml-deflnlte nature of the error
covarlance Is malntalned to mlnlmlze the com-

plexlty of the statlstlcal propertles of the
error estimates. A survey of square-root

filtering techniques was glven by Kamlnskl, et
al. [146].

The basic Idea of maxlmum-llkel lhood estlmatlon

Is to construct a function of the data and

unknown parameters called the llkel lhood func-
tion. The llkel lhood functlon Is essentlally

the probablllty denslty of observatlons. The
estimate of parameters Is then obtained as the

parameter set whlch maxlmlzes this function.
The method of maxlmum I Ikellhood was developed

by Flsher [126,127] although the baslc Idea
dates back to Gauss [125]. In the Bayeslan

approach, the parameters thamselves are treated
as a random variable. Based on observations of

other random varlables that are correlated wlth

the parameter, Information about Its value can
be Inferred. Therefore, the parameter estimate

Is expressed In terms of the probablllty dis-
trlbutlon conditioned by past history.

Ho [135] showed that the Instrumental varlable

method, generallzed least squares and extended

least squares are closely related to stochastic
approxlmatlon and Kalman-Bucy fllterlng. Actu-

ally, square-root filtering belongs to the same
fatally, as well, but the computatlonal concept
differs essentlally. For linear systems and
Gauss lan nolse, the maxlmum- IIkel lhood approach

ylelds the same condltlons for the parameter
calculatlon as the least-squares approach.

Although the preceding technlques have been

wldely used In the fleld of controls, formal
direct appllcatlon to modal parameter Identlfl-
catlon for flexlble structures has been mlnl-

real. Two technlques which has been extended
and applled for modal Identlflcatlon of struc-
tures -- mlnlmum reallzatlon and lattlce fll-

terlng -- are dlscussed In the followlng
sect Io n.

Technlques Related to lexlal Testing. In the
fleld of controls, the process of constructlng

a state space representation using experimental

data Is called system reallzatlon. A mlnlmum
reallzatlon Is a model wlth the smallest state

space dlmenslon among model s real Ized that have
the same Input-output relatlons wlthln a specl-
fled degree of accuracy. Mlnlmum reallzatlon

theory was orlglnally developed by Ho and

K_Iman [137], using Markov parameters (pulse

r(sponse functlons). Questions regarding
mlnlmum real Izatlon from various types of

Irput-output data and generation of a mlnlmum

rtlal real Izatlon were studled by Tether
i44], Sllverman [145], and Rossen and Lapldus

[147]. Rossen and Lapldus [148] successfully

alplled Ho-Kalman and Tether methods to chaml-

c_l engineering systems.

A common weakness of the preceding schemes Is
tl,at the effects of nolse were not evaluated.

_'long follow-up developments along similar

I nes, Kung [156] presented another algorithm

I i conjunctlon with the singular value decompo-
s tlon technique to treat the presence of the
n_;Ise. Under the Interaction of structure and

omtrol dlsclpl Ines, the Elgensystem Real Iza-
t on Algorlthm (ERA) [61] was developed by

J Jang and Pappa for modal parameter Identlflca-
t on and model reductlon for dynamlc systems

from test data. Based on a slmllar approach, a

frequency-domaln ERA and a recurslve ERA also
w_re developed [168,170]. Thorough treatment
o _ the effects of nolse on the ERA-Identlfled

m::,dal parameters was presented by Juang and

Pappa [167]. Correlatlon of several modal
testing methods was derlved by Juang [169] vla

s_stam reallzatlon theory.

L_dder or lai-tlce fllterlng first appeared In
the reviewed literature by Morf, et al. [155]
a-:;a recurslve method for solvlng the llnear

least squares problem. The term "ladder" or
"lattice" orlglnated from the shape of the data

flow dlagram of the technique. Interpreted In

t_.rms of the corresponding state space reallza-
tlon, the ladder Implementatlon uses a state
vE)ctor that has a dlagonal covarlance matrix.
l_ecurslve Identl f Icatlon using the ladder

representation has been extenslvely studled by
Lee and Morf [159] and Frledlander [88].

l_ecently, the algorlthms have been applled to
Identlflcatlon of flexlble structures by Sund-

erarajan and Montgomery [162,164] and Wlberg
[165].

(30NQ.UD I NG I_IMJ_KS

llle field of modal testlng has expanded con-

_Inuously over Its 40-year history. Thls

cirowth Is largely associated wlth corresponding

improvements In computer capabll Itles. These
increases In computer capabl I Ity have permltted

nora accurate and complete testlng and data

_nalysls to occur. Algorlthms and approaches
_hought too extensive In the past are now
1easlble. Several new uses for modal test data
fare also evolved. In partlcular, experlmental

nodal data are now belng used frequently to

(Irectly solve the problem at hand, rather than
(nly for reflnlng a flnlte-element model, the
_radltlonal use In the aerospace communlty.
"hese direct uses of test data Include predict-



lng the effects of physlcal changes to the
structure using an experimental modal model and
developlng hybrld analytical/experlmental
models of overall system dynamics.

For actlve control of space structures, the
experlmental modal date can also be used di-
rectly for control law design, once the final
conflguratlon of the system is tested uslng the
control sensors and actuators. Thls task wlll

requl re complete and accurate Identl f lcatlon of
the system ehlle In orbit and Is motivating
further technology Improvements to ensure
success. Complex, built-up structures, In
partlcular, still pose a significant challenge
to the best ground-based methodology now avall-
able. Success wlth large space structures will
demand the combined efforts of the control and

structural dynamics disciplines. The solld
theoretical and methodologlcal foundations from
the control field should be comblned with the

extensive experimental knowledge from the modal
testing field. Addltlonal work Is needed to
better understand and correlate current tech-

niques from both flelds. A prlnclpal goal Is
to flnd a common basis to explain and to select
from the myrlad of possible technlques.
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